jueves, 19 de febrero de 2009

EL IMPULSO NERVIOSO






El Impulso Nervioso



Función del impulso nervioso

La fibra nerviosa se mantiene en un estado polarizado principalmente gracias al sistema de transporte sodio - potasio, y que, como resultado de este transporte, se ha creado un gradiente de difusión muy grande para el Na+ dentro de la fibra. Al interrumpirse el sistema de transporte como cuando se aplica un estímulo a la fibra, se permite la entrada inmediata del Na+ por difusión. La entrada del Na+ es suficiente para igualar al principio, y después sobrepasar, la concentración neta de cargas negativas dentro de la fibra. Por tanto, el potencial eléctrico cae primero a cero, y luego se invierte. La fibra está despolarizada. A continuación aparece una representación gráfica de los cambios eléctricos que ocurren a manera que el Na+ va entrando a la célula:
Mientras no se logre el estado original (repolarización), la fibra no puede conducir o formar otro impulso, y se encuantra en estado refractario. Necesita aproximadamente 3 mseg para repolarizarse.
Una vez que se encuentra despolarizada, se supone que se crea un efecto de batería entre las partes despolarizadas y polarizadas. La corriente pasa entra las 2 áreas y de ello resulta un campo eléctrico.


CONDUCTIVIDAD

La fuerza del campo disminuye con rapidez desde su centro. Sin embargo, a una distancia determinada del centro es suficientemente fuerte para provocar despolarización de la siguiente sección de la fibra, y de transporte sodio - potasio empieza de nuevo en la zona despolarizada, y hay otra vez repolarización. De esta manera, el impulso avanza a lo largo de la fibra, es decir, es conducido. La propagación del impulso de este mecanismo se llama conducción por un conductor central.


CONDUCCIÓN SALTATORIA.

En las fibras mielinizadas, las únicas partes donde puede haber paso de corriente son los nodos. Estos están situados a lo largo de la fibra, a intervalos de 1 a 3 mm. En esta clase de fibra, el impulso salta de un nodo a otro, y de esta manera avanza con mucha mayor rapidez a lo largo de la fibra. Una fibra mielinizada puede conducir hasta veinte veces más rápidamente que una no mieinizada.
Otro factor que afecta también la velocidad de transmisión del impulso es el diámetro de la fibra. Se reconocen tres tipos principales de fibra:
1.- Fibras A. Su diámetro varía entre uno y veinte micrones, y tienen una velocidad de conducción desde 5 m/seg para las fibras pequeñas hasta 10m/seg para las grandes. Todas las fibras A son mielinizadas, y se encuentran en los grandes nervios motores y sensitivos del cuerpo.
2.- Fibras B. El diámetro de estas fibras varía entre uno y tres micrones; conducen a velocidades que van de tres a 14 m/seg. Las fibras B pertenecen a la porción involuntaria (autónoma) del sistema nervioso.
3.- Fibras C. Estas fibras son las más pequeñas y su diámetro es menor de 1 micrón. No son mielinizadas y se encuentran en los nervios cutáneos y vicerales.
Por lo general se puede esperar un aumento d 1 m/seg por micrón en el diámetro de la fibra. Por lo tanto, las fibras más rápidas son a la vez grandes y mielinizadas.


OTRAS PROPIEDADES FISIOLÓGICAS DE LAS NEURONAS.

Además de la excitabilidad y la conducción, las neuronas poseen las siguientes propiedades:
1.- Siguen la ley del todo o nada. Para un estimulo de fuerza determinada, la neurona puede responder ya sea con un impulso completo o con ninguno. Parece ser que el mecanismo de transporte tiene algún umbral de detención, y que un estimulo puede detenerlo o no hacerlo.
2.- Tiene un período refractario muy corto. Durante la despolarización no pueden conducir impulsos adicionales. La repolarización ocurre con gran rapidez (3m/seg como máximo), de manera que la neurona es capaz de conducir una serie de impulsos.
3.- Demuestran tener una reobase. La palabra reobase se refiere a la fuerza del estímulo necesario para despolarizar. No todas las fibras tienen la misma reobase; algunas se despolarizan con más facilidad que otras.
4.- Demuestran tener una cronaxia. Cronaxia es el tiempo necesario para que una corriente de 2x reobase provoque la despolarización. Implica que cualquier estímulo debe durar determinado tiempo para poder provocar la despolarización.
5.- Demuestran acomodación. Si un estímulo no alcanza rápidamente su valor máximo, puede no haber despolarización, aunque su máximo sea mayor que la reobase. La neurona acomoda o aumenta su reobase. Esto permite a la neurona ser selectiva para los estímulos. Si reaccionáramos a todos los estímulos que recibimos, estaríamos literalmente saltando todo el tiempo.
Es fácil observar que las propiedades de las neuronas son similares a las de los demás tejidos. Como se ha demostrado con muchas clases de tejidos, el tejido nervioso desempeña mejor su labor que otros.


MÉDULA ESPINAL.

La médula espinal se extiende a lo largo de unos 45 cm desde la médula oblongada hasta el nivel de la segunda vértebra lumbar. En la parte interna se encuentra la substancia gris de la médula espinal en forma de H, que contiene principalmente cuerpos celulares de la neuronas. Alrededor de la substancia gris se encuentra la substancia blanca, que se compone principalmente de fibras nerviosas mielinizadas. La substancia blanca constituye las regiones funcionales conocidas como tractos. Los tractos pueden ser ascendentes y llevar los impulsos motores y del cerebro hasta la periferia el cerebro. Los tractos motores de la médula espinal son descendentes, y se derivan de las diversas áreas corticales y de los núcleos del cerebro. Su nombre refleja su origen. Los tractos córticoespinales son las vías voluntarias. El tracto córticoespinal lateral es el que cambia de lado en la médula, de manera que el lado opuesto del cerebro controla determinado lado de músculos corporales.
Todos los tractos descendentes forman las llamadas neuronas motoras superiores. Los numerosos tractos convergen hasta formar uno solo, que va a las neuronas motoras inferiores, cuyo cuerpo celular está situado en la columna gris anterior de la médula espinal, y cuyo axón va a dar a los músculos pasando por las raíces ventrales. Este tipo de arreglo recibe el nombre de vía común final, y permite ejercer en el músculo una gran variedad de influencias.
FUNCIONES SENSITIVAS DEL SISTEMA NERVIOSO.
Las funciones sensitivas son las que se relacionan con la recepción de estímulos y su transmisión al sistema nervioso central para su interpretación y respuesta. Como se señaló anteriormente, los receptores constituyen el punto de partida básico de las actos reflejos. Los receptores de cualquier tipo siguen determinadas reglas de funcionamiento. Entre éstas se cuentan las siguientes:
1.- Siguen la ley del estímulo apropiado. Cada receptor responde mejor a una forma de energía determinada. De esta manera, el ojo responde mejor la luz, los receptores táctiles a la presión mecánica y los barorreceptores al estiramiento.
2.- Siguen la ley de las energías nerviosas específicas. El impulso que se genera al estimular cualquier receptor es el mismo. La interpretación subjetiva de sensaciones específicas depende de la conexión central que hace la fibra. Parece que la despolarización de un receptor se realiza de la misma manera que la de un envío.
3.- Hasta cierto grado, los receptores pueden comunicar intensidad de estimulación. La frecuencia de descarga de impulsos de un receptor aumenta con la fuerza de la estimulación. Parece ser que la discriminación se limita a incrementos de aproximadamente 10% de la intensidad de estimulación (ley de Weber Fechner). Por ejemplo, si se sostiene en la mano un peso de 5 kg. Y se agrega medio kilogramo, se advierte que es más pesado; esto no sucede con un cuarto de kilogramo.
4.- Los receptores muestran adaptación. La frecuencia de la descarga es rápida al principio y después disminuye.


NEUROFISIOLOGÍA

Estudio de cómo las células nerviosas o neuronas reciben o trasmiten información. En el procesamiento de las señales nerviosas están implicados dos tipos de fenómenos: eléctricos y químicos. El proceso eléctrico propaga una señal en el interior de la neurona, y el proceso químico trasmite la señal desde una neurona a otra, o a una célula muscular.
Una neurona es una célula de gran longitud formada por un área central engrosada que contiene el núcleo, una prolongación larga llamada axón, y unas prolongaciones arborescentes más cortas llamadas dentritas. Las dentritas reciben los impulsos procedentes de otras neuronas. (Las excepciones son las neuronas sensitivas, como las que trasmiten información sobre la temperatura o el tacto, en las que la señal es generada por receptores cutáneos especializados). Estos impulsos se propagan eléctricamente a lo largo de la membrana celular hasta el final del axón. En el extremo del axón la señal se trasmite de forma química a una neurona adyacente o a una célula muscular.
Trasmisión eléctrica
Una neurona está polarizada, es decir, tiene una carga eléctrica negativa en el interior de la membrana celular respecto al exterior. Esto se debe a la libre circulación de iones potasio con carga positiva a través de la membrana celular, y al mismo tiempo, a la retención de moléculas grandes con carga negativa dentro de la célula. Los iones de sodio con carga positiva se mantienen en el exterior de la célula mediante un proceso activo. Todas las células tienen esta diferencia de potencial, pero cuando se aplica a una célula nerviosa una corriente estimuladora se produce un suceso único. Primero, los iones de potasio penetran en la célula, reduciendo su carga negativa (despolarización). En un cierto momento las propiedades de la membrana cambian y la célula se hace permeable al sodio, que entra en ella con rapidez y origina una carga neta positiva en el interior de la neurona. Esto se denomina el potencial de acción.
Una vez alcanzado este potencial en una zona de la neurona, éste se propaga a lo largo del axón mediante un intercambio de iones en unos puntos específicos llamados nódulos de Ranvier. La amplitud del potencial de acción es autolimitado, debido a que una concentración elevada de sodio en el interior origina la expulsión de la célula primero de iones potasio, y después de sodio, restableciendo la carga negativa en el interior de la membrana celular, es decir la neurona se repolariza. El proceso completo dura menos de una milésima de segundo. Después de un breve lapso, llamado periodo refractario, la neurona está en condiciones de repetir este proceso.
Trasmisión química
Cuando la señal eléctrica alcanza el extremo del axón, éste estimula en la célula unas pequeñas vesículas presinápticas. Estas vesículas contienen sustancias químicas llamadas neurotrasmisores, y son liberadas en el espacio submicroscópico que existe entre las neuronas (hendidura sináptica). El neurotrasmisor se une a receptores especializados sobre la superficie de la neurona adyacente. Este estímulo provoca la despolarización de la célula adyacente y la propagación de su propio potencial de acción. La duración de un estímulo procedente de un neurotrasmisor está limitado por su degradación en la hendidura sináptica y su recaptación por la neurona que lo había elaborado. Antes se pensaba que cada neurona elaboraba sólo un neurotrasmisor, pero estudios recientes han demostrado que algunas células elaboran dos o más.

miércoles, 18 de febrero de 2009

LA NEURONA


Neurona
Una neurona es una célula nerviosa, elemento fundamental de la arquitectura nerviosa. Es la unidad funcional que transporta el flujo nervioso. Un cerebro humano contiene unos 100.000 millones de neuronas (1011).

Está formada por el cuerpo celular y diferentes prolongaciones:
aquí transitan los impulsos nerviosos o potenciales de acción desde el cuerpo celular hacia la siguiente célula. Los axones pueden agruparse y formar lo que comúnmente llamamos fibra nerviosa. La terminación axonal tiene forma abultada y se llama botón presináptico, el cuál contiene las vesículas sinápticas incluyendo en su interior a los neurotransmisores, que son sustancias químicas responsables de transmitir los mensajes a la neurona que le sucede.
Las dendritas, con número y estructura variable según el tipo de neurona, y que transmiten los potenciales de acción desde las neuronas adyacentes hacia el cuerpo celular o soma.
Se unen entre ellas por contacto físico en una sinapsis eléctrica, y con una hendidura en una sinapsis química. Esta unión discontinua se llama sinapsis.
Son células excitables especializadas para la recepción de estímulos y la conducción del impulso nervioso.
Las neuronas se hallan en el encéfalo, la médula espinal y los ganglios nerviosos y están en contacto con todo el cuerpo. A diferencia de la mayoría de las otras células del organismo, las neuronas normales en el individuo maduro no se dividen ni se reproducen (como una excepción las células olfatorias sí se regeneran). (Los nervios mielinados del sistema nervioso periférico también tienen la posibilidad de regenerar a través de la utilización del neurolema, una capa formado de los núcleos de las células de schwann).
. Esto se conoce en la neurociencia moderna como doctrina neurona. Para observar la estructura de una neurona, Cajal utilizó el método de Golgi, desarrollado por su rival Camilo Golgi.

Variedades de neuronas
Aunque el tamaño del cuerpo celular puede ser desde 5 hasta 135 micrómetros, las prolongaciones o dendritas pueden extenderse a una distancia de más de un metro. El número, la longitud y la forma de ramificación de las dendritas brindan un método morfológico para la clasificación de las neuronas.
Clasificación según el tamaño
Según el tamaño de las prolongaciones, las neuronas se clasifican en:
Las neuronas Golgi tipo I que tienen axón largo (pueden llegar a medir un metro), y, generalmente, mielínico.
Las neuronas Golgi tipo II que tienen axón corto.
Las células piramidales de la corteza cerebral.
Las voluminosas células de Purkinje de la corteza cerebelosa.
Las grandes neuronas motoras de la médula espinal.
Clasificación según la polaridad
Neuronas unipolares
Las neuronas unipolares son aquellas en las cuales el cuerpo celular tiene una sola dendrita que se divide a corta distancia del cuerpo celular en dos ramas, motivo por cual también se les denomina pseudounipolares (pseudos en griego es falso), una que se dirige hacia una estructura periférica y otra que ingresa en el sistema nervioso central. Se hallan ejemplos de esta forma de neurona en el ganglio de la raíz posterior.
Neuronas bipolares
Las neuronas bipolares poseen un cuerpo celular alargado y cada uno de sus extremos parte de una dendrita única. El núcleo de este tipo de neurona se encuentra ubicado en el centro de ésta, por lo que puede enviar señales hacia ambos polos de la misma. Ejemplos de estas neuronas se hallan en las células bipolares de la retina(conos y bastones), del ganglio coclear y vestibular, estos ganglios son especializados de la recepción de las ondas auditivas y del equilibrio.
Neuronas multipolares
Las neuronas multipolares tienen una gran cantidad de dendritas que nacen del cuerpo celular. Ese tipo de células son la clásica neurona con prolongaciones pequeñas (dendritas) y una prolongación larga o axón. Representan la mayoría de las neuronas.
Neuronas pseudounipolares
Tienen una sola prolongación, la cual se divide en una sola rama que entra al sistema nervioso central y otra rama periférica. Este tipo de neuronas se encuentra en los glanglios de las raíces dorsales de los nervios espinales.
Neuronas apolares
No producen señales, pero las reciben.
Clasificación según su función
Neuronas Sensitiva o Aferente
Son aquellas que conducen el impulso nervioso desde los receptores hasta los centros nerviosos. (captan la informacion del entorno)
Neuronas Asociativas o Interneuronas
Aquellas que comunican neuronas entre sí. Este tipo de neurona se encuentra exclusivamente en el sistema nervioso central.
Neuronas Motoras o eferentes
Aquellas que llevan el impulso nervioso desde los centros nerviosos hasta los órganos efectores.
Estructura
El cuerpo de la célula nerviosa consiste esencialmente en una masa de citoplasma en la cual está incluido el núcleo. El volumen del citoplasma dentro de la célula nerviosa a menudo es mucho menor que el volumen del citoplasma total de las dendritas.
El núcleo comúnmente se ubica en el centro del cuerpo celular y típicamente es grande y redondeado. En las neuronas maduras, los cromosomas ya no se duplican y sólo funcionan en la expresión genética. Por lo tanto el núcleo es pálido y los finos gránulos de cromatina están muy dispersos. Generalmente hay un nucléolo único prominente que está relacionado con la síntesis de ácido ribonucléico ribosomal (rRNA). El gran tamaño del núcleo probablemente se debe a la alta síntesis proteica.
En la mujer, uno de los cromosomas X es compacto y se conoce como Corpúsculo Barr. Se localiza sobre la superficie interna de la envoltura nuclear.
La envoltura nuclear se puede considerar una porción del retículo endoplásmico rugoso. la envoltura tiene doble capa es decir forma una cisterna, las cisternas están unidas por el denominado complejo de poro, que está formado por ocho proteínas que irradian hacia el centro de una proteína central (como los radios de una bicicleta), sirve para que sustancias de gran peso molecular, como por ejemplo proteínas, pasen al núcleo y desde el núcleo al citoplasma.
El citoplasma es rico en retículo endoplásmico (granular y agranular) y contiene las siguientes organelas principalmente: gránulos de Nissl (formado por el retículo endoplásmico rugoso), aparato de Golgi, mitocondrias, microfilamentos, microtúbulos, lisosomas, centriolos, lipofuscina, melanina, glucógeno y lípidos.
Los microfilamentos y los microtúbulos se originan en el soma y continúan por las dendritas formando el citoesqueleto neuronal, manteniendo la arquitectura del citoplasma. Los gránulos de Nissl dan al soma un aspecto atigrado.

miércoles, 1 de octubre de 2008

EL CALOR


CALOR

En física, el calor es una forma de energía asociada al movimiento de los átomos, moléculas y otras partículas que forman la materia. El calor puede ser generado por reacciones químicas (como en la combustión), nucleares (como en la fusión nuclear de los átomos de hidrógeno que tienen lugar en el interior del Sol), disipación electromagnética (como en los hornos de microondas) o por disipación mecánica (fricción). Su concepto está ligado al Principio Cero de la Termodinámica, según el cual dos cuerpos en contacto intercambian energía hasta que su temperatura se equilibre.El calor puede ser transferido entre objetos por diferentes mecanismos, entre los que cabe reseñar la radiación, la conducción y la convección, aunque en la mayoría de los procesos reales todos los mecanismos anteriores se encuentran presentes en mayor o menor grado.El calor en sí no es una forma de energía puesto que no es una función de estado. El calor que puede intercambiar un cuerpo con su entorno depende del tipo de transformación que se efectúe sobre ese cuerpo y por tanto depende del camino. Los cuerpos no tienen calor, sino energía interna. El calor es la transferencia de parte de dicha energía interna (energía térmica) de un sistema a otro, con la condición de que estén a diferente temperaturaHasta el siglo XIX se explicaba el efecto del calor en la variación de la temperatura de un cuerpo por medio de un fluido invisible llamado calórico. Este se producía cuando algo se quemaba y, además, que podía pasar de un cuerpo a otro. La teoría del calórico afirmaba que una sustancia con mayor temperatura que otra, necesariamente, poseía mayor cantidad de calórico.Benjamin Thompson y James Prescott Joule establecieron que el trabajo podía convertirse en calor o en un incremento de la energía térmica determinando que, simplemente, era un cambio en la forma de la energía.El calor es una energía degenerada puesto que el trabajo se puede transformar íntegramente en calor, pero no al contrario, (Segundo principio de la termodinámica).En la actualidad, existe la famosa palabra apacatonado que significa tener la cara colorada o tener demaciado calor en la cara.


Unidades de medida


Tradicionalmente, la cantidad de energía térmica intercambiada se mide en calorías, que es la cantidad de energía que hay que suministrar a un gramo de agua para elevar su temperatura de 14.5 a 15.5 grados celsius. El múltiplo más utilizado es la kilocaloría (kcal):

De aquí se puede deducir el concepto calor específico de una sustancia, que se define como la energía necesaria para elevar la temperatura de un gramo de dicha sustancia un grado celsius, o bien el concepto capacidad calorífica, análogo al anterior pero para una masa de un mol de sustancia (en este caso es necesario conocer la estructura química de la misma).Joule, tras múltiples experimentaciones en las que el movimiento de unas palas, impulsadas .por un juego de pesas, se movían en el interior de un recipiente con agua, estableció el equivalente mecánico del calor, determinando el incremento de temperatura que se producía en el fluido como consecuencia de los rozamientos producidos por la agitación de las palas:

El joule (J) es la unidad de energía en el Sistema Internacional de Unidades, (S.I.).El BTU, (o unidad térmica británica) es una medida para el calor muy usada en los países sajones así como en muchos campos de la ingeniería. Se define como la cantidad de calor que se debe agregar a una libra de agua para aumentar su temperatura en un grado Fahrenheit, y equivale a 252 calorías.


Medida experimental del calor

Imagen:Calorímetro.png

Vaso Dewar

Para determinar, de manera directa, el calor que se pone de manifiesto en un proceso de laboratorio, se suele emplear un calorímetro. En esencia, se trata de un recipiente que contiene el líquido en el que se va a estudiar la variación de energía por transferencia de calor y cuyas paredes y tapa (supuestamente adiabáticas) deben aislarlo, al máximo, del exterior.Un termo de paredes dobles de vidrio, cuyas superficies han sido previamente metalizadas por deposición y que presenta un espacio vacío entre ellas es, en principio, un calorímetro aceptable para una medida aproximada de la transferencia de calor que se manifiesta en una transformación tan sencilla como esta. El termo se llama vaso Dewar y lleva el nombre del físico y químico escocés James Dewar pionero en el estudio de las bajas temperaturas. En la tapa aislante suele haber un par de orificios para introducir un termómetro, con el que se evaluaría el incremento (o decremento) de la temperatura interior del líquido, y un agitador para tratar de alcanzar el equilibrio térmico en su interior, lo más rápido posible, usando un sencillo mecanismo de conveccón forzada.No sólo el líquido contenido en el calorímetro absorbe calor, también lo absorbe las paredes del calorímetro. Lo mismo sucede cuando pierde calor. Esta intervención del calorímetro en el proceso se representa por su equivalente en agua. La presencia de esas paredes, no ideales, equivale a añadir al líquido que contiene, los gramos de agua que asignamos a la influencia del calorímetro y que llamamos "equivalente en agua". El "equivalente en agua" viene a ser "la cantidad de agua que absorbe o desprende el mismo calor que el calorímetro".

cortesia de: leidy sequera 8a