miércoles, 18 de febrero de 2009

LA NEURONA


Neurona
Una neurona es una célula nerviosa, elemento fundamental de la arquitectura nerviosa. Es la unidad funcional que transporta el flujo nervioso. Un cerebro humano contiene unos 100.000 millones de neuronas (1011).

Está formada por el cuerpo celular y diferentes prolongaciones:
aquí transitan los impulsos nerviosos o potenciales de acción desde el cuerpo celular hacia la siguiente célula. Los axones pueden agruparse y formar lo que comúnmente llamamos fibra nerviosa. La terminación axonal tiene forma abultada y se llama botón presináptico, el cuál contiene las vesículas sinápticas incluyendo en su interior a los neurotransmisores, que son sustancias químicas responsables de transmitir los mensajes a la neurona que le sucede.
Las dendritas, con número y estructura variable según el tipo de neurona, y que transmiten los potenciales de acción desde las neuronas adyacentes hacia el cuerpo celular o soma.
Se unen entre ellas por contacto físico en una sinapsis eléctrica, y con una hendidura en una sinapsis química. Esta unión discontinua se llama sinapsis.
Son células excitables especializadas para la recepción de estímulos y la conducción del impulso nervioso.
Las neuronas se hallan en el encéfalo, la médula espinal y los ganglios nerviosos y están en contacto con todo el cuerpo. A diferencia de la mayoría de las otras células del organismo, las neuronas normales en el individuo maduro no se dividen ni se reproducen (como una excepción las células olfatorias sí se regeneran). (Los nervios mielinados del sistema nervioso periférico también tienen la posibilidad de regenerar a través de la utilización del neurolema, una capa formado de los núcleos de las células de schwann).
. Esto se conoce en la neurociencia moderna como doctrina neurona. Para observar la estructura de una neurona, Cajal utilizó el método de Golgi, desarrollado por su rival Camilo Golgi.

Variedades de neuronas
Aunque el tamaño del cuerpo celular puede ser desde 5 hasta 135 micrómetros, las prolongaciones o dendritas pueden extenderse a una distancia de más de un metro. El número, la longitud y la forma de ramificación de las dendritas brindan un método morfológico para la clasificación de las neuronas.
Clasificación según el tamaño
Según el tamaño de las prolongaciones, las neuronas se clasifican en:
Las neuronas Golgi tipo I que tienen axón largo (pueden llegar a medir un metro), y, generalmente, mielínico.
Las neuronas Golgi tipo II que tienen axón corto.
Las células piramidales de la corteza cerebral.
Las voluminosas células de Purkinje de la corteza cerebelosa.
Las grandes neuronas motoras de la médula espinal.
Clasificación según la polaridad
Neuronas unipolares
Las neuronas unipolares son aquellas en las cuales el cuerpo celular tiene una sola dendrita que se divide a corta distancia del cuerpo celular en dos ramas, motivo por cual también se les denomina pseudounipolares (pseudos en griego es falso), una que se dirige hacia una estructura periférica y otra que ingresa en el sistema nervioso central. Se hallan ejemplos de esta forma de neurona en el ganglio de la raíz posterior.
Neuronas bipolares
Las neuronas bipolares poseen un cuerpo celular alargado y cada uno de sus extremos parte de una dendrita única. El núcleo de este tipo de neurona se encuentra ubicado en el centro de ésta, por lo que puede enviar señales hacia ambos polos de la misma. Ejemplos de estas neuronas se hallan en las células bipolares de la retina(conos y bastones), del ganglio coclear y vestibular, estos ganglios son especializados de la recepción de las ondas auditivas y del equilibrio.
Neuronas multipolares
Las neuronas multipolares tienen una gran cantidad de dendritas que nacen del cuerpo celular. Ese tipo de células son la clásica neurona con prolongaciones pequeñas (dendritas) y una prolongación larga o axón. Representan la mayoría de las neuronas.
Neuronas pseudounipolares
Tienen una sola prolongación, la cual se divide en una sola rama que entra al sistema nervioso central y otra rama periférica. Este tipo de neuronas se encuentra en los glanglios de las raíces dorsales de los nervios espinales.
Neuronas apolares
No producen señales, pero las reciben.
Clasificación según su función
Neuronas Sensitiva o Aferente
Son aquellas que conducen el impulso nervioso desde los receptores hasta los centros nerviosos. (captan la informacion del entorno)
Neuronas Asociativas o Interneuronas
Aquellas que comunican neuronas entre sí. Este tipo de neurona se encuentra exclusivamente en el sistema nervioso central.
Neuronas Motoras o eferentes
Aquellas que llevan el impulso nervioso desde los centros nerviosos hasta los órganos efectores.
Estructura
El cuerpo de la célula nerviosa consiste esencialmente en una masa de citoplasma en la cual está incluido el núcleo. El volumen del citoplasma dentro de la célula nerviosa a menudo es mucho menor que el volumen del citoplasma total de las dendritas.
El núcleo comúnmente se ubica en el centro del cuerpo celular y típicamente es grande y redondeado. En las neuronas maduras, los cromosomas ya no se duplican y sólo funcionan en la expresión genética. Por lo tanto el núcleo es pálido y los finos gránulos de cromatina están muy dispersos. Generalmente hay un nucléolo único prominente que está relacionado con la síntesis de ácido ribonucléico ribosomal (rRNA). El gran tamaño del núcleo probablemente se debe a la alta síntesis proteica.
En la mujer, uno de los cromosomas X es compacto y se conoce como Corpúsculo Barr. Se localiza sobre la superficie interna de la envoltura nuclear.
La envoltura nuclear se puede considerar una porción del retículo endoplásmico rugoso. la envoltura tiene doble capa es decir forma una cisterna, las cisternas están unidas por el denominado complejo de poro, que está formado por ocho proteínas que irradian hacia el centro de una proteína central (como los radios de una bicicleta), sirve para que sustancias de gran peso molecular, como por ejemplo proteínas, pasen al núcleo y desde el núcleo al citoplasma.
El citoplasma es rico en retículo endoplásmico (granular y agranular) y contiene las siguientes organelas principalmente: gránulos de Nissl (formado por el retículo endoplásmico rugoso), aparato de Golgi, mitocondrias, microfilamentos, microtúbulos, lisosomas, centriolos, lipofuscina, melanina, glucógeno y lípidos.
Los microfilamentos y los microtúbulos se originan en el soma y continúan por las dendritas formando el citoesqueleto neuronal, manteniendo la arquitectura del citoplasma. Los gránulos de Nissl dan al soma un aspecto atigrado.

miércoles, 1 de octubre de 2008

EL CALOR


CALOR

En física, el calor es una forma de energía asociada al movimiento de los átomos, moléculas y otras partículas que forman la materia. El calor puede ser generado por reacciones químicas (como en la combustión), nucleares (como en la fusión nuclear de los átomos de hidrógeno que tienen lugar en el interior del Sol), disipación electromagnética (como en los hornos de microondas) o por disipación mecánica (fricción). Su concepto está ligado al Principio Cero de la Termodinámica, según el cual dos cuerpos en contacto intercambian energía hasta que su temperatura se equilibre.El calor puede ser transferido entre objetos por diferentes mecanismos, entre los que cabe reseñar la radiación, la conducción y la convección, aunque en la mayoría de los procesos reales todos los mecanismos anteriores se encuentran presentes en mayor o menor grado.El calor en sí no es una forma de energía puesto que no es una función de estado. El calor que puede intercambiar un cuerpo con su entorno depende del tipo de transformación que se efectúe sobre ese cuerpo y por tanto depende del camino. Los cuerpos no tienen calor, sino energía interna. El calor es la transferencia de parte de dicha energía interna (energía térmica) de un sistema a otro, con la condición de que estén a diferente temperaturaHasta el siglo XIX se explicaba el efecto del calor en la variación de la temperatura de un cuerpo por medio de un fluido invisible llamado calórico. Este se producía cuando algo se quemaba y, además, que podía pasar de un cuerpo a otro. La teoría del calórico afirmaba que una sustancia con mayor temperatura que otra, necesariamente, poseía mayor cantidad de calórico.Benjamin Thompson y James Prescott Joule establecieron que el trabajo podía convertirse en calor o en un incremento de la energía térmica determinando que, simplemente, era un cambio en la forma de la energía.El calor es una energía degenerada puesto que el trabajo se puede transformar íntegramente en calor, pero no al contrario, (Segundo principio de la termodinámica).En la actualidad, existe la famosa palabra apacatonado que significa tener la cara colorada o tener demaciado calor en la cara.


Unidades de medida


Tradicionalmente, la cantidad de energía térmica intercambiada se mide en calorías, que es la cantidad de energía que hay que suministrar a un gramo de agua para elevar su temperatura de 14.5 a 15.5 grados celsius. El múltiplo más utilizado es la kilocaloría (kcal):

De aquí se puede deducir el concepto calor específico de una sustancia, que se define como la energía necesaria para elevar la temperatura de un gramo de dicha sustancia un grado celsius, o bien el concepto capacidad calorífica, análogo al anterior pero para una masa de un mol de sustancia (en este caso es necesario conocer la estructura química de la misma).Joule, tras múltiples experimentaciones en las que el movimiento de unas palas, impulsadas .por un juego de pesas, se movían en el interior de un recipiente con agua, estableció el equivalente mecánico del calor, determinando el incremento de temperatura que se producía en el fluido como consecuencia de los rozamientos producidos por la agitación de las palas:

El joule (J) es la unidad de energía en el Sistema Internacional de Unidades, (S.I.).El BTU, (o unidad térmica británica) es una medida para el calor muy usada en los países sajones así como en muchos campos de la ingeniería. Se define como la cantidad de calor que se debe agregar a una libra de agua para aumentar su temperatura en un grado Fahrenheit, y equivale a 252 calorías.


Medida experimental del calor

Imagen:Calorímetro.png

Vaso Dewar

Para determinar, de manera directa, el calor que se pone de manifiesto en un proceso de laboratorio, se suele emplear un calorímetro. En esencia, se trata de un recipiente que contiene el líquido en el que se va a estudiar la variación de energía por transferencia de calor y cuyas paredes y tapa (supuestamente adiabáticas) deben aislarlo, al máximo, del exterior.Un termo de paredes dobles de vidrio, cuyas superficies han sido previamente metalizadas por deposición y que presenta un espacio vacío entre ellas es, en principio, un calorímetro aceptable para una medida aproximada de la transferencia de calor que se manifiesta en una transformación tan sencilla como esta. El termo se llama vaso Dewar y lleva el nombre del físico y químico escocés James Dewar pionero en el estudio de las bajas temperaturas. En la tapa aislante suele haber un par de orificios para introducir un termómetro, con el que se evaluaría el incremento (o decremento) de la temperatura interior del líquido, y un agitador para tratar de alcanzar el equilibrio térmico en su interior, lo más rápido posible, usando un sencillo mecanismo de conveccón forzada.No sólo el líquido contenido en el calorímetro absorbe calor, también lo absorbe las paredes del calorímetro. Lo mismo sucede cuando pierde calor. Esta intervención del calorímetro en el proceso se representa por su equivalente en agua. La presencia de esas paredes, no ideales, equivale a añadir al líquido que contiene, los gramos de agua que asignamos a la influencia del calorímetro y que llamamos "equivalente en agua". El "equivalente en agua" viene a ser "la cantidad de agua que absorbe o desprende el mismo calor que el calorímetro".

cortesia de: leidy sequera 8a

domingo, 3 de agosto de 2008

PARTICULAS ATOMICAS

Partículas Fundamentales:
Las partículas fundamentales de un átomo son los bloques constituyentes básicos de cualquier átomo. El átomo, y por tanto toda la materia está formado principalmente por tres partículas fundamentales: electrones, neutrones y protones. El conocimiento de la naturaleza y la forma en que funcionan es fundamental para comprender las interacciones químicas.
La masa del electrón es muy pequeña en comparación con la masa del protón o del neutrón. La carga del protón es de magnitud igual pero de signo opuesto a la carga del electrón. Procederemos a estudiar estas partículas con mayor detalle.
El Electrón:
El electrón, comúnmente representado como e− es una partícula subatómica. En un átomo los electrones rodean el núcleo, compuesto de protones y neutrones. Los electrones tienen la carga eléctrica más pequeña, y su movimiento genera corriente eléctrica. Dado que los electrones de las capas más externas de un átomo definen las atracciones con otros átomos, estas partículas juegan un papel primordial en la química.
Historia y descubrimiento del electrón
La existencia del electrón fue postulada por G. Johnstone Stoney, como una unidad de carga en el campo de la electroquímica. El electrón fue descubierto por Thomson en 1897 en el Laboratorio Cavendish de la Universidad de Cambridge, mientras estudiaba el comportamiento de los rayos catódicos. Influenciado por el trabajo de Maxwell y el descubrimiento de los rayos X, dedujo que en el tubo de rayos catódicos existían unas partículas con carga negativa que denominó corpúsculos.
Aunque Stoney había propuesto la existencia del electrón fue Thomson quién descubrió su caracter de partícula fundamental. Para confirmar la existencia del electrón era necesario medir sus propiedades, en particular su carga eléctrica. Este objetivo fue alcanzado por Millikan en el célebre experimento de la gota de aceite realizado en 1909.
George Paget Thomson, hijo de J.J. Thomson, demostró la naturaleza ondulatoria del electrón probando la dualidad onda-corpúsculo postulada por la mecánica cuántica. Este descubrimento le valió el Premio Nobel de Física de 1937.
El spin del electrón se observó por vez primera en el experimento de Stern-Gerlach. Su carga eléctrica puede medirse directamente con un electrómetro, y la corriente generada por su movimiento con un galvanómetro.
Los electrones y la práctica
Propiedades y comportamiento de los electrones
El electrón tiene una carga eléctrica negativa de −1.6 × 10−19 culombios y una masa de 9.10 × 10−31 kg (0.51 MeV/c2), que es aproximadamente 1800 veces menor que la masa del protón. El electrón tiene un spin 1/2, lo que implica que es un fermión, es decir, que se le puede aplicar la estadística de Fermi-Dirac.
Aunque la mayoría de los electrones se encuentran formando parte de los átomos, los hay que se desplazan independientemente por la materia o juntos formando un haz de electrones en el vacío. En algunos superconductores los electrones se mueven en pareja.
Cuando los electrones que no forman parte de la estructura del átomo se desplazan y hay un flujo neto de ellos en una dirección, este flujo se llama corriente eléctrica. La electricidad estática no es un flujo de electrones. Es más correcto definirla como "carga estática", y está causada por un cuerpo cuyos átomos tienen más o menos electrones de los necesarios para equilibrar las cargas positivas de los núcleos de sus átomos. Cuando hay un exceso de electrones, se dice que el cuerpo está cargado negativamente. Cuando hay menos electrones que protones el cuerpo está cargado positivamente.
Si el número total de protones y electrones es equivalente, el cuerpo está en un estado eléctricamente neutro. Los electrones y los positrones pueden aniquilarse mutuamente produciendo un fotón. De manera inversa, un fotón de alta energía puede transformarse en un electrón y un positrón.
El electrón es una partícula elemental, lo que significa que no tiene una subestructura (al menos los experimentos no la han podido encontrar). Por ello suele representarse como un punto, es decir, sin extensión espacial.
Sin embargo, en las cercanías de un electron pueden medirse variaciones en su masa y su carga. Esto es un efecto común a todas las partículas elementales: la partícula influye en las fluctuaciones del vacío en su vecindad, de forma que las propiedades observadas desde mayor distancia son la suma de las propiedades de la partícula más las causadas por el efecto del vacío que la rodea.
Hay una constante física llamada radio clásico del electrón, con un valor de 2.8179 × 10−15 metros. Es preciso tener en cuenta que éste es el radio que se puede inferir a partir de la carga del electrón descrito desde el punto de vista de la electrodinámica clásica, no de la mecánica cuántica. Por esta constante se refiere a un concepto desfasado, aunque útil para algunos cálculos.
Electrones en el Universo: Se cree que el número total de electrones que cabrían en el universo conocido es del orden de 10130.
Electrones en la vida cotidiana: La corriente eléctrica que suministra energía a nuestros hogares está originada por electrones en movimiento. El tubo de rayos catódicos de un televisor se basa en un haz de electrones en el vacío desviado mediante campos magnéticos que impacta en una pantalla fosforescente. Los semiconductores utilizados en dispositivos tales como los transistores Más información en: Electricidad
Electrones en la industria: Los haces de electrones se utilizan en soldaduras.
Electrones en el laboratorio: El microscopio electrónico, que utiliza haces de electrones en lugar de fotones, permite ampliar hasta 500.000 veces los objetos. Los efectos cuánticos del electrón son la base del microscopio de efecto túnel, que permite estudiar la materia a escala atómica.
El Protón:
Partícula nuclear con carga positiva igual en magnitud a la carga negativa del electrón; junto con el neutrón, está presente en todos los núcleos atómicos. Al protón y al neutrón se les denomina también nucleones. El núcleo del atómo de hidrógeno está formado por un único protón. La masa de un protón es de 1,6726 × 10-27 kg, aproximadamente 1.836 veces la del electrón. Por tanto, la masa de un átomo está concentrada casi exclusivamente en su núcleo. El protón tiene un momento angular intrínseco, o espín, y por tanto un momento magnético. Por otra parte, el protón cumple el principio de exclusión.
El número atómico de un elemento indica el número de protones de su núcleo, y determina de qué elemento se trata. En física nuclear, el protón se emplea como proyectil en grandes aceleradores para bombardear núcleos con el fin de producir partículas fundamentales. Como ion del hidrógeno, el protón desempeña un papel importante en la química.

El antiprotón, la antipartícula del protón, se conoce también como protón negativo. Se diferencia del protón en que su carga es negativa y en que no forma parte de los núcleos atómicos. El antiprotón es estable en el vacío y no se desintegra espontáneamente. Sin embargo, cuando un antiprotón colisiona con un protón, ambas partículas se transforman en mesones, cuya vida media es extremadamente breve. Si bien la existencia de esta partícula elemental se postuló por primera vez en la década de 1930, el antiprotón no se identificó hasta 1955, en el Laboratorio de Radiación de la Universidad de California.
Los protones son parte esencial de la materia ordinaria, y son estables a lo largo de periodos de miles de millones, incluso billones, de años. No obstante, interesa saber si los protones acaban desintegrándose, en una escala temporal de 1033 años o más. Este interés se deriva de los actuales intentos de lograr teorías de unificación que combinen las cuatro interacciones fundamentales de la materia en un único esquema.
Muchas de las teorías propuestas implican que el protón es, en último término, inestable, por lo que los grupos de investigación de numerosos aceleradores de partículas están llevando a cabo experimentos para detectar la desintegración de un protón. Hasta ahora no se han encontrado pruebas claras; los indicios observados pueden interpretarse de otras formas.
El Neutrón:
El Neutrón es una partícula eléctricamente neutra, de masa 1.838,4 veces mayor que la del electrón y 1,00014 veces la del protón; juntamente con los protones, los neutrones son los constitutivos fundamentales del núcleo atómico y se les considera como dos formas de una misma partícula: el nucleón.
La existencia de los neutrones fue descubierta en 1932 por Chadwick; estudiando la radiación emitida por el berilio bombardeado con partículas, demostró que estaba formada por partículas neutras de gran poder de penetración, las cuales tenían una masa algo superior a la del protón.
El número de neutrones en un núcleo estable es constante, pero un neutrón libre, en decir, fuera del núcleo, se desintegra con una vida media de unos 1000 segundos, dando lugar a un protón, un electrón y un neutrino.
En un núcleo estable, por el contrario, el electrón emitido no tiene la energía suficiente para vencer la atracción coulombiana del núcleo y los neutrones no se desintegran. La fuente de neutrones de mayor intensidad disponible hoy día es el reactor nuclear. El proceso fundamental que conduce a la producción de energía nuclear es la fisión de un núcleo de uranio originado por un neutrón: en la fisión el núcleo se escinde en dos partes y alrededor de tres neutrones por término medio (neutrones rápidos); los fragmentos resultantes de la escisión emiten, además otros neutrones.
Los neutrones como todas las radiaciones, producen daños directos, provocando reacciones nucleares y químicas en los materiales alcanzados. Una particularidad de los neutrones es la de producir en los materiales irradiados sustancias radioactivas de vida media muy larga. De ahí que los daños más graves producidos por las explosiones nucleares sean los provocados por neutrones en cuanto que las sustancias transformadas en radiactivas por su acción pueden ser asimiladas por organismos vivientes; pasado cierto tiempo, estas sustancias se desintegran y provocan en el organismo trastornos directos y mutaciones genéticas.